I read an interesting article in Wired about how and why Pixar uses colours in film to generate emotions in the audience, but one particular part caught my eye, about a special Dolby Cinema projector they have there. I've quoted the relevant snipped below:
I've never seen a Dolby Vision projector as there's not one near me, but I hope to one day. I wonder if the technology in this new super-Dolby projector will ever make it to mainstream - or even just high end - cinemas? It'll obviously need films mastered and graded specifically for it, but maybe one day it will happen.
IN A VERY special screening room at Pixar's Emeryville, California, headquarters is a very special screen. It's not huge, perhaps just 10 feet across, and it's at the front of a room dominated by a huge control panel studded with five smaller computer monitors and at least two keyboards. The ceiling is covered in felt, and the carpet squares are black instead of the gray that's standard at Pixar, to keep light contamination to a minimum.
...
That big screen at Pixar isn't lit by a typical projector. Instead, mounted in the wall behind us is a custom-built Dolby Cinema projector head. If you've been to a theater with a Dolby setup, you were looking at images cast by a projector that was actually a pair of triple-barreled laser guns—red, green, and blue beams capable of combining to produce a range of colors closer to what human vision can perceive than anything else out there. The two guns had wavelengths slightly offset from one another so that special 3D glasses can distinguish them, one lens for each, and your brain can combine them to create the illusion of dimensionality.
But at Pixar, all six beams come from one source, which means this projector has six primary colors. Also, the Dolby rig has a span of brightness, from dark-dark to bright-bright—in screen terms that's called dynamic range—and the one at Pixar is more than 10 times brighter than one in a civilian-class Dolby Cinema.
Part of how we see color is how much light is behind it, how much overall energy is pumping toward us. So most modern color spaces have an axis that measures this, with black (no light) at one end and white (all the light) at the top.
The standard unit for measuring what's called luminous intensity, the amount of light coming from a source over a given angle of view, is the candela—as in one candle's worth. But if you're talking about “luminosity,” the amount of light emitted by something like a TV screen, what you want is candelas per square meter, also known as a nit. Dolby Cinema output is 108 nits, but Pixar amps it up even more. Sitting at the control panel of the Pixar system, senior scientist Dominic Glynn practically glows with praise. “We've goosed this projector with an extra 600 percent laser power. We can get well above a thousand nits on this screen,” he says. “It's one of the most linear, perfect reference color-grading displays you can conceive of.”
So this projection room is where wide-color-gamut, high-dynamic-range colorcasting abilities merge with Pixar's creation of virtual sets, each with their own virtual physics of light. People like Glynn can actually generate a world of color wholly unlike the one you and I usually live in. “We could light the whole set with a green laser,” Glynn says. “That's kind of hard to do in the real world.”
...
That big screen at Pixar isn't lit by a typical projector. Instead, mounted in the wall behind us is a custom-built Dolby Cinema projector head. If you've been to a theater with a Dolby setup, you were looking at images cast by a projector that was actually a pair of triple-barreled laser guns—red, green, and blue beams capable of combining to produce a range of colors closer to what human vision can perceive than anything else out there. The two guns had wavelengths slightly offset from one another so that special 3D glasses can distinguish them, one lens for each, and your brain can combine them to create the illusion of dimensionality.
But at Pixar, all six beams come from one source, which means this projector has six primary colors. Also, the Dolby rig has a span of brightness, from dark-dark to bright-bright—in screen terms that's called dynamic range—and the one at Pixar is more than 10 times brighter than one in a civilian-class Dolby Cinema.
Part of how we see color is how much light is behind it, how much overall energy is pumping toward us. So most modern color spaces have an axis that measures this, with black (no light) at one end and white (all the light) at the top.
The standard unit for measuring what's called luminous intensity, the amount of light coming from a source over a given angle of view, is the candela—as in one candle's worth. But if you're talking about “luminosity,” the amount of light emitted by something like a TV screen, what you want is candelas per square meter, also known as a nit. Dolby Cinema output is 108 nits, but Pixar amps it up even more. Sitting at the control panel of the Pixar system, senior scientist Dominic Glynn practically glows with praise. “We've goosed this projector with an extra 600 percent laser power. We can get well above a thousand nits on this screen,” he says. “It's one of the most linear, perfect reference color-grading displays you can conceive of.”
So this projection room is where wide-color-gamut, high-dynamic-range colorcasting abilities merge with Pixar's creation of virtual sets, each with their own virtual physics of light. People like Glynn can actually generate a world of color wholly unlike the one you and I usually live in. “We could light the whole set with a green laser,” Glynn says. “That's kind of hard to do in the real world.”
Comment